Oxford Cambridge and RSA

## GCSE (9-1) Mathematics <br> J560/05 Paper 5 (Higher Tier) <br> Practice Paper

## Date - Morning/Afternoon

## Time allowed: 1 hour 30 minutes



You may use:

- Geometrical instruments
- Tracing paper

Do not use:

- A calculator


INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Read each question carefully before you start your answer.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.


## INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [ ].
- This document consists of 20 pages.
$1 \quad A B C D$ is a trapezium.
$A D=B C$.


Not to scale

Work out
(a) angle EBC,

$$
\begin{align*}
& E B C=180-110 \\
&=70^{\circ} \quad \text { co-interior angles add up to } 180  \tag{}\\
& \text { (a) ..... }
\end{align*}
$$

(b) angle ADE.

$$
\begin{align*}
& \hat{E D C}=180-95=85^{\circ} \text { cointerior angles } \\
& A \hat{C} C B C D=110^{\circ} \text { because } A D=B C \\
& \text { ADE }=A D C-E D C \\
& =110-85 \\
& =25^{\circ} \\
& \text { (b) }  \tag{}\\
& 25
\end{align*}
$$

2 The angles in a triangle are in the ratio 1:2:3.
Neil says
This is a right-angled triangle.
Is Neil correct?
Show your reasoning.
$1: 2: 3$ total parts of ratio $=1+2+3=6$
angles in a triangle $=180^{\circ}$ so 1 part of the ratio $=\frac{180}{6}=30^{\circ}$
1:2:3
$\times 30 \times 30 \times 30$
$30^{\circ}: 60^{\circ}: 90^{\circ}$ so Neil is correct as $90^{\circ}$ is a right angle, so triangle is right-angled.
$3 A B C D$ is a rectangle.


Not to scale
(a) Sunita calculates the length of $A C$, but gets it wrong.

$$
\begin{aligned}
8-6^{2} & =A C^{2} \\
\sqrt{28} & =A C \\
\sqrt{28} & =5.29 \text { or }-5.29 \\
A C & =5.29
\end{aligned}
$$

Explain what Sunita has done wrong.

$$
\begin{aligned}
& \text { She has calculated } 8^{2}-b^{2} \text { when she should have calculated } \\
& 8^{2}+6^{2} \text {. Pythagoras: } a^{2}+b^{2}=c^{2}
\end{aligned}
$$

(b) Calculate the length of AC.

$$
\begin{aligned}
A C^{2} & =8^{2}+6^{2} \\
& =64+26 \\
& =100 \\
A C & =\sqrt{100} \\
& =10
\end{aligned}
$$

(b)
m [2]

PhysicsAndMathsTutor.com
4

4 This is a conversion graph between pounds and euros.

(a) Convert $£ 36$ into euros.
(a) $€$
43
[1]
(b) (i) Convert €400 into pounds.
$€ 400$ not on scale so convert $€ 100$ to $£ s$ then multiply by 4 .
$€ 100=£ 83$
$£ 83 \times 4=£ 332$

$$
\text { (b)(i) } £ \ldots . . . . . . . .
$$

(ii) State an assumption that you have made in working out your answer to part (b)(i).

The exchange rate is constant/stays the same.
(c) Explain how the graph shows that the number of euros is directly proportional to the number of pounds

Straight line.
Passes through origin.

5 Kamile sells sandwiches.
In May, she sold 400 sandwiches.
In June, Kamile sold 20\% more sandwiches than in May.
In July, Kamile sold 15\% fewer sandwiches than in June.
Calculate the percentage change in her sales from May to July.
June:

$$
\begin{aligned}
& 20 \% \text { of } 400=400 \times \frac{20}{100}=400 \div 5=80 \\
& \text { Sandwiches sold }=400+80=480
\end{aligned}
$$

July:
$10 \%$ of $480=480 \div 10=48$
$5 \%$ of $480=10 \%$ of $480 \times \frac{1}{2}=48 \times \frac{1}{2}=24$
$15 \%$ of $480=48+24=72$
Sandwiches sold $=480-72,15 \%$ less than June
$\%$ change $=\frac{408-400}{400} \times 100=\frac{8}{400} \times 100=2 \%$
2

6 This is a square.


## Not to scale

Work out the length of the side of the square.

$$
\begin{aligned}
& 4(x-2)=5 x-20 \leftarrow \text { as sides are of equal length } \\
& \begin{aligned}
4 x-8 & =5 x-20 \\
-4 x & -4 x \\
-8 & =x-20 \\
+20 & +20 \\
12 & =x
\end{aligned}
\end{aligned}
$$

length of side: $\begin{aligned} 4(x-2) & =4(12-2) \text { substitute } x=12 \\ & =4 \times 10 \\ & =40 \mathrm{~cm}\end{aligned}$

7 This scatter graph shows the values of 15 sports cars plotted against their ages.

(a) (i) Lewis thinks that there is no correlation between the ages and values of these cars.

Is Lewis correct?
Give a reason for your answer.

A correlation is a linear relationship between the variables. (You can draw a straight line through them.)

Yes, Lewis is correct The points do not follow the same linear pattern.
(ii) Sebastian thinks that there is a relationship between the ages and values of these cars.

Is Sebastian correct?
Give a reason for your answer.
Yes, Sebastian is correct. Initially, the value of the cars decreases
as the age increases. After a certain point, as the cars get older,
their value then increases.
(b) The car with the highest value is 40 years old.

Estimate the age of the car with the lowest value.
Look at graph to find lowest value.
(Answers between 11 and 14 are accepted.)
(b) ...................... years [2]

8 Andrea has these two fair spinners.


Spinner A


Spinner B
(a) Andrea spins spinner $\mathbf{A}$.

Calculate the probability that Andrea gets 2 with one spin.

$$
P(2)=\frac{1}{4}
$$

(a)

(b) Andrea now spins both spinners once.

She adds the number she gets on spinner $A$ to the number she gets on spinner $B$.
(i) Andrea works out the probability that the two numbers she gets add to 4 .

Here is her working.

$$
1+3=4 \quad 3+1=4
$$

There are 4 outcomes on each spinner making 8 outcomes in total.
The probability of the two numbers adding to 4 is $\frac{2}{8}=\frac{1}{4}$.

Andrea has made some errors.
Describe these errors.
There is only one way for the numbers to add to 4. 1 on spinner $A$ and 3 on $B$ as there is no 1 on spinner $B$.

The total number of outcomes is 16 not. 8 .
4 outcomes on spinner $A \times 4$ on spinner $B=4 \times 4=16$
(ii) Find the probability that the two numbers she gets add to 6 .

| $A$ | $B$ |
| :--- | :--- |
| 1 | 5 |
| 2 | 4 |
| 3 | 3 |

$$
\begin{aligned}
P(\text { add to } 6) & =3 \text { out of } 16 \\
& =\frac{3}{16} \leftarrow \begin{array}{l}
\text { total number } \\
\text { of outcomes }
\end{array} \\
& \text { (b)(ii) .............. } \frac{3}{16}
\end{aligned}
$$

9 (a) Calculate.

$$
2 \frac{3}{8} \div 1 \frac{1}{18}
$$

Give your answer as a mixed number in its lowest terms.
$2 \frac{3}{8}=\frac{16}{8}+\frac{3}{8}=\frac{19}{8}$ and $1 \frac{1}{18}=\frac{18}{18}+\frac{1}{18}=\frac{19}{8} \leftarrow$ convert to improper fractions $2 \frac{3}{8} \div 1 \frac{1}{18}=\frac{19}{8} \div \frac{19}{18}=\frac{19}{9} \times \frac{18}{19}$ flip second fraction and multiply. cancel 19 from top $=\frac{189}{8} \times \frac{18}{1 \alpha_{1}}=\frac{1}{8} \times 18$
and bottom and bottom.

$$
\begin{aligned}
=\frac{18}{8}=\frac{16}{8}+\frac{2}{8} & =2 \frac{2}{8} \\
& =2 \frac{1}{4}
\end{aligned}
$$

(a) $\qquad$

$$
\begin{gathered}
\text { convert } \\
\text { bact }
\end{gathered} 8^{8}=2 \frac{1}{4}
$$

(b) Write $\frac{5}{11}$ as a recurring decimal.

$$
\begin{aligned}
\frac{5}{11} & =\frac{45}{99} \\
& =0.45
\end{aligned}
$$

find equivalent fraction with only is on denominator. number of $9 s$ is the number of digits in recurring part of decimal. or $\frac{5}{11}=5 \div 11$

$$
\frac{0.4545 \cdots}{1115 \cdot 0^{6} 0^{5} 0^{6} 0}
$$

(b)
0.45
(c) Write $0 . \dot{3} \dot{6}$ as a fraction in its lowest terms.
let $x=0.36$
$100 x=36 . \ddot{36}$ multiply by 100 to move one full recurring sequence past

$$
\begin{aligned}
& 100 x=36.36 \\
& \text { the decimal point. } x=0.36 \\
& \hline 99 x=36 \rightarrow x=\frac{36}{99}=\frac{4}{11}
\end{aligned}
$$

(c)

$$
\frac{4}{11}
$$

c)

10 In the diagram $B C$ is parallel to $D E$.

(a) Prove that triangle $A B C$ is similar to triangle ADE.
$a$ is common to triangles $A B C$ and ABE
$\left.\begin{array}{l}A \hat{D} E=A \overline{B C} C \\ A A^{2} D=A \hat{A} B\end{array}\right\}$ corresponding angles are equal
3 pairs of equal angles
therefore triangle $A B C$ is similar to triangle $A D E$.
(b) Calculate the length of AC.

(c) Find the ratio
area of quadrilateral DBCE : area of triangle $A B C$.
ratio of lengths
ratio of areas $1^{2}\binom{1: 3}{1: 9} 3^{2}$ scale factor $k \rightarrow k^{2}$
area of quadrilateral $D B C E=$ area of $A B C$ - area of $A D E$

$$
=9-1=8 \text { parts' of ratio. }
$$

area of quadrilateral DBCE: area of triangle $A B C$
$8: 9$
(c) 9

11 Evaluate.

$$
\begin{aligned}
& 16^{-\frac{3}{2}}=\left(\frac{1}{16}\right)^{\frac{3}{2}}=\sqrt{\frac{1}{16}}^{3}=\frac{\sqrt{1}^{3}}{\sqrt{16}}=\left(\frac{1}{4}\right)^{3}=\frac{1^{3}}{4^{3}}=\frac{1}{64} \\
& a^{\frac{3}{n}}=(n \sqrt{a})^{m} \quad a^{-n}=\frac{1}{a^{n}}
\end{aligned}
$$

$\qquad$

12 (a) Expand and simplify.

$$
\begin{aligned}
& =x^{2}+2 x+7 x+14 \\
& =x^{2}+9 x+14
\end{aligned}
$$

(a) $\qquad$
(b) Factorise completely.

$$
\left.2 \times x \times x \cdot 2 x^{2}-6 x y\right) 6 \times x \times y=2 \times 3 \times x \times y
$$

$2 x$ is common

$$
=2 x(x-3 y)
$$

(b) ...... $2 x(x-3 y)$
(c) Solve.

$$
x^{2}+5 x=24
$$

$$
\begin{aligned}
& x+5 x-24=0 \text { rearrange to } a x^{2}+b x+c=0 \\
& \begin{array}{ll}
x+8)(x-3)=0 & (x+p)(x+q) \\
(x) & \text { where } p q=-24 \\
& 8+q=5
\end{array} \\
& \begin{array}{ll}
\text { if } x+8=0 \text { then } x=-8 & 8 x-3=-24 \\
\text { if } x-3=0 \text { then } x=3 & 8+(-3)=5
\end{array}
\end{aligned}
$$

(c)

$$
x=3 \text { and } x=-8
$$

13 (a) Sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

[2]
(b) (i) Write down the coordinates of the maximum point of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

(ii) Write down the coordinates of the maximum point of $y=3+\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
+3 is a translation 3 units up.
max: $(90,4)$
$x$ doesn't $\tau<1+3=4$
change
(c) One solution to the equation $4 \sin x=k$ is $x=60^{\circ}$.
(i) Find the value of $k$.

$$
\begin{align*}
c \sin 60 & =k \\
\sin 60 & =\frac{0}{1-1}=\frac{\sqrt{3}}{2} \\
4 \sin 60 & =4\left(\frac{\sqrt{3}}{2}\right)=2 \sqrt{3} \\
k & =2 \sqrt{3}
\end{align*}
$$

(ii)
 . 4 ) [1]

(c)(i) $k=$

$$
2 \sqrt{3}
$$

$\qquad$
(ii) Find another solution for $x$ in the range $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
\begin{aligned}
& 4 \sin x=2 \sqrt{3} \\
& \sin x=\frac{\sqrt{3}}{2} \\
& \sin 60=\sin (180-60) \\
& \quad=\sin 120 \\
& x=120^{\circ}
\end{aligned}
$$

(ii) $x=$

14 Here is a sequence.

(a) Work out the next term.
$14 \sqrt{7} \times \sqrt{7}=14 \times 7=98$

$$
\begin{array}{r}
14  \tag{1}\\
\times \quad 7 \\
\hline 9^{28}
\end{array}
$$


(a)
(b) Find the $n$th term.
first term $=2$ geometric progression nth term is a $x_{r}^{\downarrow_{r}} n_{n}^{\text {con }}$
common ratio $=\sqrt{7}$
nth term $=2 \times(\sqrt{7})^{n-1}$
(b)

[3]
(c) Find the value of the 21 st term divided by the 17 th term. $\times \sqrt{7}^{4}$

21 st term $\div 17$ th term
$21-17=4$
21 st $\div 17$ th $=$ common ratio ${ }^{4}$

$$
\begin{aligned}
& =(\sqrt{7})^{4} \\
& =(\sqrt{7})^{2} \times(\sqrt{7})^{2} \\
& =7 \times 7 \\
& =49
\end{aligned}
$$

$$
(\sqrt{a})^{2}
$$

$$
=7 \times 7 \quad=\sqrt{\alpha} \times \sqrt{a}
$$

$$
=a
$$

15 Tony and lan are each buying a new car.
There are three upgrades that they can select:

- metallic paint (10 different choices)
- alloy wheels (5 different choices)
- music system (3 different choices).
(a) Tony selects all 3 upgrades.

Show that there are 150 different possible combinations.
10 choices of paint $\times 5$ choices of wheels $\times 3$ choices of music
$=10 \times 5 \times 3$
$=150$
(b) lan selects 2 of these upgrades.

Show that there are 95 different possible combinations.
metallic paint and alloy wheels: $10 \times 5=50$ combinations metallic paint and music system: $10 \times 3=30$ combinations alloy wheels and music system: $5 \times 3=15$ combinations total combinations: $50+30+15=95$ combinations

16 Triangle $A B C$ has area $40 \mathrm{~cm}^{2}$.
$A B=2 B C$.


Not to scale

Work out the length of BC.
Give your answer as a surd in its simplest form.

$$
\begin{aligned}
\text { let } B C & =x \mathrm{~cm} \quad \text { so } A B=2 \times B C=2 x \mathrm{~cm} \\
\text { area } & =0.5 \times x \times 2 x \times \sin 30^{\circ} \text { area of } \triangle=\frac{1}{2} a b \sin C \\
& =0.5 \times 2 x^{2} \times \sin 30^{\circ} \\
& =x^{2} \times \sin 30 \\
& =0.5 x^{2} \quad \sin 30=\frac{1}{2} \\
0.5 x^{2} & =40 \\
x^{2} & =80 \\
x & =\sqrt{80}=\sqrt{16} \times \sqrt{5}=4 \sqrt{5} \\
B C & =4 \sqrt{5} \mathrm{~cm}
\end{aligned}
$$

17 A solid metal sphere has radius 9.8 cm .
The metal has a density of $5.023 \mathrm{~g} / \mathrm{cm}^{3}$.
Lynne estimates the mass of this sphere to be 20 kg .
Show that this is a reasonable estimate for the mass of the sphere.
[The volume $V$ of a sphere with radius $r$ is $V=\frac{4}{3} \pi r^{3}$.]

$$
\begin{aligned}
& \begin{aligned}
\text { radius } & =9.8 \mathrm{~cm} \rightarrow 10 \mathrm{~cm} \\
\text { density } & =5.023 \mathrm{~g} / \mathrm{cm}^{3} \longrightarrow 5 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { round to 1sf for estimate } \\
\text { volume } & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \pi \times(10)^{3}==\frac{4000}{3} \pi \mathrm{~cm}^{3} \\
& =\frac{4000}{3} \times 3=4000 \mathrm{~cm}^{3} \quad \pi=3.14 \ldots \rightarrow \pi=3 \\
\text { mass }=5 \times 4000 & =20,000 \mathrm{~g}) \text { density }=\frac{\text { mass }}{\text { volume }} \text { so } m=d \times v \\
& =20 \mathrm{hg} \text { t } m=1000
\end{aligned}
\end{aligned}
$$

So the estimate is reasonable.

18 (a) The diagram shows a circle, centre $O$.


$$
\begin{gathered}
\text { circumference }=\pi d=2 \pi r \\
2 \pi r=20 \pi \\
r=10 \mathrm{~cm}
\end{gathered}
$$

The circumference of the circle is $20 \pi \mathrm{~cm}$.
Find the equation of the circle.
equation of a circle: $x^{2}+y^{2}=r^{2}$ centre $(0,0)$
(a) $\quad x^{2}+y^{2}=10^{2}$
(b) The line $10 x+p y=q$ is a tangent at the point $(5,4)$ in another circle with centre $(0,0)$. Find the value of $p$ and the value of $q$.
gradient of radius $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{5-0}=\frac{4}{5}$ gradient of tangent $=-\frac{5}{4}$ $m_{1} \times m_{2}=-1$ for
gradient of line $10 x+p y=q$ is $-\frac{5}{4}$ perpendicular lines. $10 x+p y=q$

$$
\begin{aligned}
& 10 x+p y=q \quad \text { rearrange for } y=m x+c \\
& p y=q-10 x \quad q
\end{aligned}
$$

$$
\begin{aligned}
& p y=q-10 x \\
& y=-\frac{10 x}{p}+\frac{q}{p} \quad y=m x+c \text { where } m=-\frac{10}{p} .
\end{aligned}
$$

$$
\begin{array}{rr}
-\frac{10}{p} x-5 p & (5,4) 10(5)+8(4 \\
8=p & 50+32=q \\
\text { cross } & =p \\
\text { multiply } & 82
\end{array}
$$

$=q \leftarrow$ substitute
(b) $p=$ $\qquad$

$$
q=
$$

$\qquad$

$$
p=8, q=82
$$

PhysicsAndMathsTutor.com

## BLANK PAGE

## PLEASE DO NOT WRITE ON THIS PAGE

PhysicsAndMathsTutor.com

## BLANK PAGE

## PLEASE DO NOT WRITE ON THIS PAGE

## PLEASE DO NOT WRITE ON THIS PAGE

[^0]
[^0]:    Copyright Information
    OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.
    If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

    For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
    OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

